Upper triangular Toeplitz matrices and real parts of quasinilpotent operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernoulli, Ramanujan, Toeplitz and the triangular matrices

By using one of the definitions of the Bernoulli numbers, we prove that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems of equations. In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system. The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t...

متن کامل

Bounds for Inverses of Triangular Toeplitz Matrices

This short note provides an improvement on a recent result of Vecchio on a norm bound for the inverse of a lower triangular Toeplitz matrix with nonnegative entries. A sharper asymptotic bound is obtained as well as a version for matrices of finite order. The results are shown to be nearly best possible under the given constraints. 1. Introduction. This paper provides an improvement on a recent...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

cocharacters of upper triangular matrices

we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.

متن کامل

Hyperinvariant subspaces and quasinilpotent operators

For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors‎. ‎We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors‎. ‎Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector‎, ‎and so $T$ has a nontrivial hyperinvariant subspace‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2014

ISSN: 0022-2518

DOI: 10.1512/iumj.2014.63.5193